
SF 298 MASTER COPY KEEP THIS COPY FOR REPRODUCTION PURPOSES

REPORT DOCUMENTATION PAGE Form Approved

OMB NO. 0704-0188

AGENCY USE ONLY (Leave blank)

4. TITLE AND SUBTITLE

2. REPORT DATE

14 August 1996
3. REPORT TYPE AND DATES COVERED

Final 1 July 1995 - 30 June 1996

Combat Simulation Trajectory Management-

6. AUTHOR(S)

John B. Gilmer Jr.

5. FUNDING NUMBERS

7- PERF°R™"^ UHÜANIZATION NAMES(S) AND ADDRESS(ES)

Wilkes University
P.O. Box 111

Wilkes-Barre, PA 18766

SfteHo^-qz-i-oZso

8. PERFORMING ORGANIZATION
REPORT NUMBER

a. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)

RO: Ä^yr*0ffice

Research Triangle Park, NC 27709-221

11. SUPPLEMENTARY NOTES

10. SPONSORING / MONITORING
AGENCY REPORT NUMBER

m Z'it^-i -^

^om7i'ßSp^^f^^^^^is rrrt are th0,se °f th,e author(s) and should not be c°™rued as y imem or tne Army position, policy or decision, unless so designated by other documentation.

12a. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release; distribution unlimited.

13- ABS TRACT (Maximum 200 words) ' "

SSSSSSto Äf eXplid?y ***** muItiPle 0utcomes for r-dom events
buü^cS^^hif^ 6 °n forCe COmbat simuJation resembling Eagle was
SemSX trajectories when selected random events oc<£rf in order to
cc^eTwS■Jmv^n^dTcTn0UtCTSpaCC- This"^trajectorysimulation

I 10 h niCTDiDi ITIOM rnnc

9960909 155

14. SUBJECT TERMS

Simulation, stochastic, random events, simulation trajectory,

trajectory management, combat simulation.

17. SECURITY CLASSIFICATION
OR REPORT

I UNCLASSIFIED
NSN 7540-01-280-5500

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

15. NUMBER IF PAGES

 29
16. PRICE CODE

20. LIMITATION OF ABSTRACT

"% ■' UL

^C qjJALSIY mSPEUxED I Enclosure 1 Standard Form 298 (Rev. 2-89)
Prescribed bv ANSI Std. 239-18

REPORT DOCUMENTATION PAGE (SF298)
(Continuation Sheet)

LIST OF MANUSCRIPTS

John B. Gilmer Jr. and Frederick J. Sullivan, "Combat Simulation Trajectory
Management", Proceedings of the Military, Government and Aerospace Simulation
Conference, 1996, The Society for Computer Simulation, April 1996, pp 236-241. This
paper reported early results.

Frederick J. Sullivan and John B. Gilmer Jr., "Managing Multiple Trajectory Parallel
Simulation", Proceedings of the 1996 High Performance Computing Conference, The
Society for Computer Simulation, April 1996, pp 320-323. This paper reported early
results.

John B. Gilmer Jr., Frederick J. Sullivan, and Sadeq Al-Hassan, "Testing of
Multitrajectory Techniques for Military Simulation", was presented in Working Group 33,
Modeling, Simulation, and Wargaming, of the 64th Military Operations Research Society
Symposium, June 1996, and submitted DTIC for publication.

Frederick J. Sullivan, John B. Gilmer Jr., and Sadeq Al-Hassan, "Software Issues in
Multitrajectory Simulation" was presented to Working Group 31, Computing Advances in
Military Operations Research, of the 64th MORS Symposium, June 1996, and submitted to
DTIC for publication.

SCIENTIFIC PERSONNEL

John B. Gilmer, Jr., Principal Investigator

Frederick J. Sullivan, Investigator

Sadeq Al-Hassan, Graduate Research Assistant. He is expected to earn an MSEE in
January, 1997, with a thesis based on work done on this project.

Report of INVENTIONS: none

SCIENTIFIC PROGRESS AND ACCOMPLISHMENTS:

Demonstrated that the multitrajectory simulation technique can be practically implemented.
Also, showed that this technique adds value for force on force combat simulation. For a
given commitment of computational resources, the multitrajectory technique is superior to
stochastic simulation in giving the analyst an understanding the outcome space.

TECHNOLOGY TRANSFER:

In addition to presentation of papers at conferences, gave briefings to the Head of the U.S.
Army Concepts Analysis Agency, Deputy Undersecretary of the Army for Operations
Research, and to two private companies, BDM International and Pioneer Decision
Technologies. The Final Report briefing delivered is an appendix to this report.

Enclosure 2

COMBAT SIMULATION TRAJECTORY MANAGEMENT

FINAL REPORT

JOHN B. GILMER JR.

14 AUGUST, 1995

U.S. ARMY RESEARCH OFFICE

GRANT DAAH04-95-0350

WJLKES UNIVERSITY

APPROVED FOR PUBLIC RELEASE;

DISTRIBUTION UNLIMITED.

THE VIEWS, OPINIONS, AND/OR FINDINGS CONTAINED IN THIS REPORT ARE
THOSE OF THE AUTHOR AND SHOULD NOT BE CONSTRUED AS AN OFFICIAL
SEPARTMENT OF THE ARMY POSITION, POLICY, OR DECISION, UNLESS SO
DESIGNATED BY OTHER DOCUMENTATION.

TABLE OF CONTENTS

Statement of the Problem 4

Summary of the Most Important Results 4

List of Publications and Technical Reports 5

List of All Participating Scientific Personnel 6

Report of Inventions 6

Bibliography 6

Appendix A, Annotated Final Report Briefing 7

LIST OF APPENDIXES, ILLUSTRATIONS, AND TABLES

The Multitrajectory Concept 7

What We Hope an Analyst Will See at the End of a Simulation "Run" 8

Chaos Observed in 3 sector Lanchester Model 9

Movement in Eaglet 12

Multitrajectory Movement Events 13

Acquisition in Eaglet 14

What has to Happen 14

Software Issues: How Not to Manage State Bifurcation 15

Differences in How to Write Code for Random Events 16

Objects 16

A Simple Test Scenario 18

Mid Sized Scenario, Simplified 19

Individual State Probability Histogram 19

Trajectory Truncation 20

Outcome Space Coverage vs Proportion of Truncated States 20

Comparison of Stochastic, Multitrajectory Outcomes 21

Trajectory Merging 22

Characterizing the Outcome Set 22

Distance Surrogat Metric 23

Effects of Varying Merge Distance 23

Divergence of Pruned States from their Surrogates 24

Stochastic and Multitrajectory/Deterministic Policy for Mid-sized Scenario 25

Other Multitrajectory Choice Policies for Mid sized Scenario 26

Other Cases for Mid sized Scenario 27

Analysis Strategies 27

Examples of Analytic Use 28

STATEMENT OF THE PROBLEM

The management of random outcomes in stochastic simulation, coupled with the
option to track multiple outcomes of stochastic events, was proposed as a way of obtaining
more information about the outcome space of a combat simulation than could be achieved
by random stochatic choices as is normally done. This project was intended as an
exploration of this concept to see whether the technique could be practically implemented,
and whether it would achieve worthwhile benefits.

The problems included both implementation issues and usefulness issues. Creating
additional trajectories for a simulation at random events involves potentially multiple returns
from the random choice mechanism for each call. A class and object structure was sought
to hide the multitrajectory implementation behind a facade that would allow programming
as if the simulation were conventionally stochastic. This proved a more difficult challenge
than expected.

The second issue was whether the management techniques used to prevent
unbounded combinatoric explosion in the face of many events would still deliver results
that were more useful, given the computational resources used, than would stochastic
simulation. This issue was explored in the context of a force of force simulation, with
Eagle (a simulation used for analysis at the U.S. Army Concepts Analysis Agency) being
the exemplar to provide a context.

These issues were pursued by building a simple prototype simulation "eaglet" in
C++ that resembled Eagle in certain essential features, implementing the class structures
and features to support multitrajectory simulation, and exercising the simulation for a small
scenario about the scale of the smaller Eagle scenarios.

SUMMARY OF THE MOST IMPORTANT RESULTS

We found that it is indeed possible to encapsulate the multitrajectory features in a
class structure in C++ that allows the programmer to develop functional model code as if it
were stochastic. However, there were problems in the use of local variables when the state
context changes on the second return from a "chooser" (that resolves the random event) in a
multitrajectory event. The most troubling aspect became known as the "this" problem. In
C++ the local variable "this" points to the current object. Upon return from a
multitrajectory event, "this" incorrectly points to the current object, but in the wrong
trajectory. This cannot be easily fixed because in C++ "this" is not writable. A discipline
was developed that allows these problems (including the "this" problem) to be avoided. A
cleaner interface would be desirable, but could not be developed within the scope of this
project.

The multitrajectory technique, with a variety of choice management options, was
explored in the context of a very simple four unit scenario and a larger scenario of about 40
units. The smaller scenario allowed exhaustive comparison of all possible outcomes,
which was particularly useful for verification. It also gave encouraging results for cases
where resources are available to cover a large proportion of the outcome space, showing
that the multitrajectory approach gives more information about the outcome space than
larger amounts of computation applied to randomly determined trajectories.

For the mid-sized scenario, results were less conclusive, because the scenario could
never be made to operate correctly on the larger target machines. Consequently tests were
limited to 800 states, which was a small proportion of the outcome space. Nevertheless, a

combination of multitrajectory and stochastic event resolution strategy gave better results
than a purely stochastic simulation with the same number of trajectories. These tests
pointed out the need for more research in the trajectory management heuristics, and the
issues of scaling in general.

A more detailed report of results can be found in Appendix A.

LIST OF PUBLICATIONS AND TECHNICAL REPORTS

PUBLISHED OR PRESENTED REPORTS

John B. Gilmer Jr. and Frederick J. Sullivan, "Combat Simulation Trajectory
Management", Proceedings of the Military, Government and Aerospace Simulation
Conference, 1996, The Society for Computer Simulation, April 1996, pp 236-241. This
paper reported early results.

Frederick J. Sullivan and John B. Gilmer Jr., "Managing Multiple Trajectory Parallel
Simulation", Proceedings of the 1996 High Performance Computing Conference, The
Society for Computer Simulation, April 1996, pp 320-323. This paper reported early
results.

John B. Gilmer Jr., Frederick J. Sullivan, and Sadeq Al-Hassan, "Testing of
Multitrajectory Techniques for Military Simulation", was presented in Working Group 33,
Modeling, Simulation, and Wargaming, of the 64th Military Operations Research Society
Symposium, June 1996, and submitted DTIC for publication.

Frederick J. Sullivan, John B. Gilmer Jr., and Sadeq Al-Hassan, "Software Issues in
Multitrajectory Simulation" was presented to Working Group 31, Computing Advances in
Military Operations Research, of the 64th MORS Symposium, June 1996, and submitted to
DTIC for publication.

In addition, briefings were given to Mr. Vandiver, Head, U.S. Concepts Analysis Agency,
and Mr. Hollis, Deputy Undersecretary of the Army for Operations Research. An
annotated copy of the latter briefing is included in Appendix A.

UNPUBLISHED REPORTS, AVAILABLE ON REQUEST

John B. Gilmer Jr., "Combat Simulation Trajectory Management, Preliminary Simulation
Specifications", August 14, 1995.

John B. Gilmer Jr., "Combat Simulation Trajectory Management Development Issues",
August 26, 1995.

John B. Gilmer Jr., "Metrics for Eaglet State Management", Sept 18, 1995.

John B. Gilmer Jr., "Managing this Forking Program", Sept 19, 1995.

John B. Gilmer Jr., "Eaglet Operations and Rules Summary", Nov 10, 1995.

John B. Gilmer Jr., "Sampling for Eaglet Attrition", Nov 17, 1995.

John B. Gilmer Jr., "Outcome Space Characterization", Jan 22, 1996.

John B. Gilmer Jr., "Outcome Space Characterization and Analytic Assessment
Techniques", February 12, 1996.

Note: These unpublished reports were primarily used as design documentation and as a
vehicle for communicating features needed for the simulation within the project team.

LIST OF ALL PARTICIPATING SCIENTIFIC PERSONNEL

John B. Gilmer, Jr., Principal Investigator

Frederick J. Sullivan, Investigator

Sadeq Al-Hassan, Graduate Research Assistant. He is expected to earn an MSEE in
January, 1997, with a thesis based on work done on this project.

REPORT OF INVENTIONS none

BIBLIOGRAPHY

LTC Robert S. Alexander, Briefing on Eagle received on 19 July, 1995. The information
received is documented in a memo by J.B.Gilmer of July 21, 1995. This briefing was the
basis of the functional design for the prototype simulation "eaglet" used in this project.

"Eagle Combat Model", TRADOC Analysis Command -- Operations Analysis Center, Ft.
Leavenworth, Kansas. This is a copy of a presentation on Eagle describing its architecture
and functionality.

John B. Gilmer Jr., "The Effects of Decisionmaking Quality and Timeliness on the
Response Surface of a Simple Combat Simulation", Paper presented at the 63rd MORS
Symposium, June 1995. This paper describes prior research performed on combat
simulation nonmonotonicity, with a focus on C2 effects.

John B. Gilmer Jr. and James A. Adams, "Managing Uncertainty Explicitly in
Simulation", Paper presented at the 62nd MORS Symposium. The concept described in
this paper was the genesis of this project. This paper was included in the project proposal.

Bodhisattwa Mukherjee, Greg Eisenhauer and Kaushik Ghosh, "A machine Independent
Interface for Lightweight Threads", Operating Systems Review of the ACM Special
Interest Group in Operating Systems, pp 33-47, Jan 1994. This paper discusses Cthreads,
which was one option considered for implementing the continuations of events.

William Klinger and Jonathan Rees, "RevisedM Report on the Algorithmic Language
Scheme", describes continuations in the Lisp dialect Scheme, which was closer in function
to the capability needed in this project.

APPENDIX A Annotated Final Report Briefing

Combat Simulation Trajectory Management

Final Report

25 July 1996

John B. Gilmer Jr.
Frederick J. Sullivan

Department of Electrical and Computer Engineering
Department of Mathematics and Computer Science

Wilkes University
Wilkes-Barre, PA 18766

(717)831-4885

This report was delivered to the Deputy Undersecretary of the Army for Operations
Research, the Hon. Walt Hollis. A somewhat more detailed version was delivered to Mr.
Vindiver, Head, U.S. Army Concepts Analysis Agency on 16 July.

The Multitrajectory Concept
Conventional Simulation:

I F)raw nnmlvr I

Each replication gives only one outcome,
randomly determined

Multi-Trajectory Simulation:

State
P=.3
 ►/RandomV*^'

yyvent ./""N^^

State
P=.2

State
P=.l

Each replication gives numerous outcomes,
characterized by their probabilities

The principle behind this project is the generation of multiple trajectories from random
events. The word "event" is used for the point in a simulation at which a random choice
may be made, resulting in possibly different outcomes. This is not identical to the meaning
in the sense of "event sequenced" simulation. If the probabilities of the various outcomes
of an event are known, one can keep track of the probabilities of the various trajectories.

Motivation for Multitrajectory Simulation
Simulation needs to represent the real world,

but need not operate like the real world.

Real world: Only one trajectory

For the Analyst: We would like to understand
all of the possible trajectories
and their probabilities

Motivation: Treat simulation as a tool to address the analyst's
problem rather than one that operates like the real world.

We have also been concerned with the effects of "chaos"
in simulation response, and would like a tool that would be
better able to generate response surfaces that cover a multitude
of parameters and events more efficiently.

What we hope an Analyst will
see at the end of a simulation "run"

r

The Range
of Possible
Outcomes
of the J
Simulation^

V.

Outcomes represented
by known final states
of the Simulation

Outcomes believed to be
very similar to known
final states of the
Simulation

^v
We want these
to be a large

. proportion of
^■the possible

outcome space.

We want high
confidence that

Bthese "similar"
outcomes really
are close to those
that we have

J
Unknown final states

The outcome space can be thought of as the full range of possible outcomes given
randomness in a defined set of events. For those events having randomness that most
affects the outcome, we would like to have good coverage in our set of final states. Where
we do not have the actual final states, we would at least like to know that in most cases
those states we did not retain were similar to those we did follow. There will usually also
be those that were not followed, perhaps because they were each so improbable, though
numerous, that the resources to follow them did not seem worthwhile.

Background: Origins of this Project
1. Determinism vs Stochastic nature of Combat

(Discussions during design earlier combat models, early 80's)

2. Analysis of "Great Battles" wargame combat system-
Design and implementation of exhaustive analyis software

3. Concern for analyst's perspective tracing back to Simtech 97

4. "Chaos" as way of understanding sensitivity of combat models-
Design and use of "CombatChaos" model to demonstrate this

Conclusion: Knowing that combat models
are chaotic does not solve problems. What is
needed is a way to manage their operation to
produce useful results in the presence of
chaotic behavior. Motivation for this effort.

A number of projects and reports have identified chaos or nonmonotonicity in combat
simulations as a possible pitfall for analysis. Unfortunately, knowing there is possible
chaotic behavior is not the same as knowing what to do something about it.

Chaos Observed in 3 sector Lanchester Model
x>.33, y>.5

■4
x>.33, y=.5

i
x=.33, y=.5

1 4
Initial Situations

White: Blue wins 2-1 or more
Black: Red wins 2-1 or more

Equal forces of 100 ,
pk=.005/unit/min.
10 minute time step

Proportion of Blue force in Center Sector

This is an example of such a study, that revealed nonmonotonic responses of a simple
simulation as initial Blue dispositions vary. The Blue disposition parameters are only two
of a host of parameters and event outcomes that can be thought of as random. Parametric

studies such as this are inadequate to address all of these possible sources of variation.

Combat Simulation Trajectory Management

Funding: From CAA via ARO, $47,615
Duration: 1 year (July 95 to June 96)

Staffing: Principal investigator (J. Gilmer) 1/4 time
Investigator (F. Sullivan) 1/12 time
Graduate Research Assistant 1/2 time

Objective: Examine experimentally the concept of
Multitrajectory Simulation and determine its practicality
and benefit for large scale combat simulation

We hope to show that by explicitly controlling the treatment
of probabilistic events, we will convey more information to
the analyst at lower cost than with multiple stochastic
replications. Furthermore, we expect to show that this is
practical in terms of software development.

Combat Simulation Trajectory Management
Project Tasks

Task 1.1 Define objectives and characteristics
for the surrogate simulation.

Task 1.2 Develop the prototype simulation.

Task 1.3 Perform initial replications to characterize
the simulation.

Task 2.1 Assess the simulation's behavior against the prototypes.

Task 2.2 Assess simulation trajectory behaviors under a
stochastic distribution of critical event outcomes.

Task 2.3 Implement an Initial trajectory management technique
based on similarity and pruning.

Task 2.4 Evaluate the effectiveness of proposed management
techniques

As the project developed, and due to the availability of Dr. Frederick J. Sullivan, it was
possible to focus more on implementation issues than originally expected. Thus, we were
able to develop a much more comprehensive foftware approach than originally anticipated.
Unfortunately, the new prototype could not be made to operate on the Silicon Graphics
machines of the Wilkes Simulation Lab, so that the larger scale tests could not be carried
out.

10

Issues and Approaches
The basic problem: Exponential explosion

in the number of states as the number
of random events grows large.

Suppose each random event has only two possible outcomes:
After only 10 events, 1024 states have been created.
The average number of states is 205. Both numbers grow rapidly.

Possible ways to control this problem:
1. Limit the number of random events

Reserve explicit treatment of random trajectories
to "critical" events that result in divergent trajectories

2. Consolidate identical states, Represent state differences
These are software techniques for gaining efficiency

3. Consolidate similar states at some cost in Confidence
Only the most probable, or most representative, states are
tracked explixcitly.

The Surrogate Simulation: "eaglet"

Intended to resemble Eagle in functional characteristics

Intended to be much simpler than Eagle

Written in C++ (due to facilities for handling objects, etc.)

Functional Characteristics:
1. Link-Node movement along preplanned routes
2. Units have "strength" rather than list of weapons
3. Attrition does reflect front, flank, rear sector allocations
4. Aquisition loss/gain on enemy units can be stochastic
5. Units each have "Task" with objective, intent, etc.
6. Rule based decisionmaking
7. Time stepped sequencing

Initial version: Multitrajectory resolution for 5 events:
Movement selection, attrition, Acquisition gain/loss,
decisionmaking

The approach in this project was experimental, but the complexity of the simulation
software needed to stay bounded for reasons of practicality. The original "Eagle" is written
in Lisp, but we wished to stay with C++ because of its object handling and availability.
The representation of functional characteristics in "eaglet" was kept similar to those in
Eagle, but with great simplification. For example, instead of having a list of items, each
unit has only abstract units of "force". Where in Eagle units plan routes, in eaglet all routes
were pre-planned. This allowed better control of the project and managable verification.

11

Movement in "eaglet"
Starting position

,8 probability

Deterministic route
Alternative routes

At each node, a random event
chooses the outbound link.

nodes in
terrain

Unlike Eagle,
eaglet does not represent

Objective the underlying link/node representation of
terrain, since we assume this was taken into
account in deriving routes which, for eaglet, are preplanned.

Eagle is deterministic, while we needed events in eaglet to represent stochastic processes.
The "movement selection" event is used to illustrate. In Eagle, a unit would plan a route
consisting of a number of nodes connected by a single chain of links. A random process
(if implemented) for generating the route might choose one of a number of different
possible routes. To avoid having to build a planner, routes in eaglet represent the network
of possible routes that a stochastic path planner might generate. This structure, as
illustrated above, is an input. Because it is an input, for this event we can predetermine the
possible outcomes and their probabilities, which is helpful for verification of the
multitrajectory event handling software. (This would not be possible for some other
events.)

For a unit starting at the point in the upper left corner, there is a .8 chance the unit would
follow the heavy arrow, and a .2 chance it would go the other way. At other points there
are other possibilities for random choices. This particular route can be traversed 6 different
ways. If there were four units following similar routes, and all were resolved with
multitrajectory events, there would be 1296 possible trajectories if this one event is always
resolved in a multi-trajectory fashion.

However, the event could be always resolved deterministically, by always taking the most
probable path (heavy arrows). Or, as with stochastic simulation, random choices could be
made. Or, and this is a focus of ongoing research, the way in which such events are
resolved is managed, to give good coverage ofg the outcome space, while preserving at
least some of the important variability of interest.

12

Multitrajectory Movement Events
State 0 State 0 k.8 probability

" Jink 12

State prior to Unit l's
arival at Node 2

State after Unit l's
arival at Node 2,
new state for the
alternative trajectory

State after Unit l's
arival at Node 2,
original state copy
and trajectory

Note: State 1 would
have been created in
an earlier state
bifurcation.

Here we see from a software perspective what happens when a movement selection event is
resolved in a multitrajectory fashion. At the time the event is recognized, we are in the
context of a particular trajectory, or state, in this case State 0. Presumably State 1 already
exists (and possibly others), since State 0 has a probability of .8 rather than 1. In this
trajectory, Unit 1 has arrived at a point where a choice must be made between two different
paths, following link 24 or link 25. Since we are resolving this event as multitrajectory,
both outcomes occur. The original state follows the more probable trajectory (which would
have been the deterministic choice). We see, though, that the probability of State 0 is now
changed to .48, reflecting the accumulated probability of being in that trajectory given the
events so far encountered.

In addition, a new trajectory, and its state, must be created. In this new trajectory, Unit 1
takes the other path instead, Link 25. The sum of the trajectories' probabilities is equal to
that of the trajectory coming into the event. The state variables associated with other units
in the trajectory would remain unchanged. Note that such a trajectory bifurcation occurs
for every event, regardless of which unit encounters the event.

The set of events for which multitrajectory treatment was provided was chosen to cover a
wide variety of cases typical of those which one might find in an analytic combat
simulation. The movement selection event shown here has varying numbers of outcomes,
and the probabilities vary with the particular event. Most other events are simpler.

13

Acquisition in "eaglet"

Radius of detection in deterministic mode

undetected
unit

Area of no
detection

event fpr
tecrion:

tatoorajectory
bifurcates

Acquisition is a binary choice with a constant parameter of .5, the simplest case. Note that
the algorithm is constructed so that the deterministic choice uses the mean of the range
limits used for the stochastic case.

What Has to Happen

Ji
>

Context of State #n

Multitrajectory
Event

Choice 0 i hoice 1 >

Create new
State #m

Do whatever
for choice 0
in state #n

Do whatever
for choice 1
in state #m

J

Inside the model
code, we in effect
need to resolve an
event in such a way
that we call a function
once (in the context
of state #n) but the
function returns twice!
Once for state #n where
choice 0 was taken, and
Once for new state #m
where choice 1 was
taken, and potentially
more times if there are
several choices.

14

Even in this simple case, the software problem gets messy. Somewhere in the bowels of
the code, a "chooser" routine is called to make a choice, hi the multitrajectory case, that
single chooser call needs to generate two different returns, one for each choice. This is not
conventional software! This violates a rather fundamental way we expect software to
behave, and yet this is exactly what we need in order to generate new trajectories cleanly.

Software Issues:
How not to manage state bifurcation

(code buried inside functional module of first prototype)

if(lose_acq_evt==0){ /* deterministic */
Acquisition_list[i]=0;
N_acquired~;}

else if(lose_acq_evt==l){ /^stochastic */
rand_num=rand()/32768.0;
if(rand_num<pct_lose) {

Acquisition_list[i]=0;
N_acquired~;}}

else if(lose_acq_evt>=2){ /*multiple */
if(p_state-

>status_event()==LOSE_ACQ_EVT&&
p_state->status_unit()==Id&&
p_state->status_itteration()==i){

Acquisition_list[i]=0;
N_acquired~;
p_state->create_status(0,ld,0);}

/*reset status*/
else{

p_new_state=new
State(p_state,pct_lose);}}

Somehow, the
new state has to
reenter and get
to this point in
the code.

The initial prototype embedded code in the functional routines to handle the creation and
initialization of new trajectories. It was messy. A lot messier than what you see here,
since there needs to be a thread of conditional statements that gets you back to this point
where the new trajectory was generated. The code also gets much more messy if you want
a variety of management strategies. This was a very early, relatively simple version used in
the initial prototype before the new class libraries were developed.

(See figure below) Here we see how a stochastic simulation writer might be inclined to
code a random choice, and how it needs to be done to support multitrajectory simulation.
The new multitrajectory class structure developed by Fred Sullivan hides the messy details
needed in the first prototype. There are differences from how a purely stochastic
simulation would do things. The most important difference is that the choice mechanism
needs to understand that what is being done is a binary choice, rather than a continuous
choice. A random number generator knows less about how its result is used than is
necessary to support the multitrajectory mechanism. Our objective was to make it relatively
easy to retrofit multitrajectory techniques into existing simulations.

15

Differences in How to Write Code
for Random Events

r = randcmO ;
if(r < .6){

do_it(this);}

Note that the called random
number function does not know
that the supplied number will
simply be used to make a binary
choice.

c = bii^zy_choice(.6)
if(c=0){

do_it(this);}

(This is the goal. In fact,
it is not quite this simple.)

Here we express to the called
function that we are just
interested in two possible
outcomes. This is what the
functional programmer needs to
do to best support multitrajectory
simulation.

The example above is the simplest type of multitrajectory event, a fixed probability binary
choice, with a probability of doing something (by a call to "do_it") of 60%. The "this"
variable is the C++ local variable containing the pointer to the current object, typically a
military unit entity. One of the problems with C++ (for our purposes) is that this "this"
variable cannot be modified in the code. On the first return from binary_choice, c will be
zero and "this" will be unmodified: it still points to the same instance of the object as when
binary_choice was called, since the first return is in the context of the same trajectory, and
state. However, on the second return from binary_choice, the "this" variable will still point
to the instance of the object which is in the original trajectory, not the current (c=l)
trajectory. The preferred solution is to overwrite "this" on the way back from
random_choice, but it is not possible to do so in C++. An alternative fix is to not use

Base
Classes

Derived
Classes

{
{

Objects

{Simulation | j State

Eaglet
Simulation

Functional
Model
Classes

E 'escriptor

Acquire
Chooser

Note: Avoid pointers as state variables, use ID's instead.

The simulation
builder works with
the derived and
functional model
classes. The multi-
trajectory details
are mostly in the
base classes.

16

"this", and substitute another local variable "self instead where "this" would normally be
used. In this particular case, there really is no problem, since "this" is not used when c=l.

The object structure puts the actual handlers of events, including the adjustment of
probability, cloning of states, and such into the base classes that provide the essentials of
multitrajectory simulation. The functional code writer, who is actually programming the
representation of movement, attrition, and other simulation model functions, would interact
with choosers and would have to know very little about the base classes. The simulation
and its states would also be objects, derived from the base classes. There would have to
be, for the derived state class, a method that would create the clone of a state. If the
functional coder needs choosers of a type not provided in the base classes, it could be
derived, as was done for the "decide" chooser that selects whether a C2 rule fires or not.

In addition, choice policies for each event type would be controlled by methods that use a
standard list of possible policies (e.g. always determiunistic, always stochastic, or
multitrajectory until n states, then deterministic). The choice policy methods could be
overridden by custom designed policies, for example ones sensitive to Measures of
Effectiveness of concern in the particular model.

One restriction is made on the state variables in the state: pointers should not be used.
Instead of a pointer, use an identifier, e.g. Unit #43 rather than the unit located in memory
at address 0xffa054e0. This is good practice for other reasons of memory efficiency,
debugging ease, and a necessity if distributed computing is to be possible.

Other Multitrajectory Events:

Acquisition Loss: Never within range of possible detection
Possible to some outer radius
Always outside the outer radius

Attrition: High, Median, and Low values for losses to a unit
during a given time step
OR: High and Low losses (2 vice 3 outcomes)

Decisionmaking: Rules are evaluated with low, median, high
criteria for: Effectiveness, Being at/ closing/
approaching objective.
Probability of rule firing depends on how
many of these criteria are met:
All: 100% two: 80% one: 40% none: 0%

As mentioned earlier, a variety of event types were selected for multitrajectory treatment, in
order to ensure the technique would be able to cover a range of different kinds of random
results. Perhaps the most important is acquisition gain or loss. This is the event most
easily modeled as stochastic.

Attrition is unique among those events treated in that a stochastic resolution is inherently
more faithful to reality than multitrajectory can be, as it is a case of a continuous chooser.
The stochastic choice could be any value within some continuous range. It is not possible
to represent all of the possible outcomes, so some representative outcomes (a few samples)

17

must suffice, for example the mean and plus or minus one standard deviation. As it turned
out, attrition events were not nearly as important in generating diverging trajectories as the
others examined, so this event was not examined in detail in our later testing.

The decisionmaking event concerns whether a rule fires or not. A rationale for assigning
probabhilities for various rules (perhaps depending on circumstances) was beyond the
scope of this project.

A Simple Test Scenario
Two Blue units attack one Red unit, Another Red unit counterattacks

,13 =R41T

Obj, Task 4

(0,0) Obj, Task 2

Units 1 and 2 attack abreast toward defensive position held by Unit 3. Tasks 11 and 12 are withdraw
operations to be executed if either looses effectiveness.
Unit 3 is to hold its initial defensive position. If it loses effectiveness, it is to delay (Task 13) or
withdraw toward a point to its rear.
Unit 4 is to wait until Unit 3 is in combat. It is then to maneuver onto the flank of the Blue units and
to attack southward. If it loses effectiveness, it is to withdraw toward the NE. If, at its initial
objective, it finds no targets, it is to continue attacking South.

The scenario used for initial testing included only four units. Yet it is representative, to the
simplest extent possible, of the more interesting Eagle scenario on which our scenarios
were based. The two Blue units attack, and one Red unit attacks on their flank, resulting in
some interesting maneuver. Resolved deterministically, the battle results in Blue being
thrown back by the counterattack, with heavy losses on both sides. With multitrajectory
movement (only), this senario generates 648 trajectories, which proved to be a very
managable number for debugging, verification, and initial analyses.

The mid-sized scenario (see following figure) is similar to an Eagle scenario used in a CAA
study of non-lethal weapons reported by LTC Maymont at the 63rd MORS Symposium.
In it Blue has a Remote Piloted Vehicle (RPV) which flies around looking for potential
problems on Blue's flank. If it sees the Red counterattack force, an attack helo squadron is
called in. The figure does not show the subsequent attack by the other Blue brigade and
other reactions by Red units in the interest of clarity. Most of the testing did not include
those subsequent operations. This scenario was never able to run successfully on the
Silicon Graphics computers of the Wilkes Simulation Lab, limiting the scope of testing that
could be done within project time and budget constraints.

18

95s 7?

t 8*

Blue forces

Mid-size scenario,
simplified

RPV routes
/^""""■p>g_

/$PS W

AH routes^

34
3^5

33

A Blue brigade attacks the Red battalion.
An RPV orbits North of the attackers.
When the attack styarts, a Red tank
battalion maneuvers to attack Blue's
flank. If spotted by the RPV, artillery
is directed at the tank battalion, and an
AH squadron is tasked to attack it.

32 39
HI «»

to a
47 37"

28

29

£

to
46

■30

45
Si 2 r

t!b
4* 4j*

40
. rfi

43

Red forces

Retreat paths for the
Red battalion and the
counterattacking tank
battalion are defined.

■4—»

CO

O
V-l

1

Individual State Probability Histogram
35 -r-

30 --

25 --

«a 20 --

15 4-

10

5

0 ^

648 trajectories
total for
multitrajectory
movement
events

10_1 10 "2 10 "3 10 "4 10
Individual State Probability

-5
-M-

10

Implications:
10% of the states
29% of the states
40% of the states

account for 63% of the outcome space
account for 86% of the outcome space
account for 96% of the outcome space

When the small (4 unit) scenario is executed with multitrajectory movement events, we get
a histogram of state probabilities as shown above. This suggests we can get very good
outcome space coverage with a small proportion of the states by "truncating" the less

19

probable states. This is done by never creating those trajectories. Events for trajectories
that are low in probability are "truncated" by resolving them in deterministic (or stochastic)
fashion rather than by the multitrajectory technique. This results, of course, in incomplete
coverage of the outcome space; the truncated states are "unknown".

Trajectory Truncation:
Random Event

f 3 n
3 T—1

£ T3
r. <l>

«J N ftn • i—t

'cd
<l> rH

> c
o o
U £

(i) </)
o <y

-4—)

CO 00
(i) u
£ >
o f 1

1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0

1<

Trajectories are truncated:

Only on™
trajectory

Trajectory "truncated"
No new state created

When the probability of the truncated trajectory is small
enough, and perhaps its metrics unimportant enough, to

be worth expending resources for computing it.

The outcome of the event is deterministic or random

Resources are saved, but some proportion of the outcome space
(which the truncated state would reach) remains unknown.

Outcome Space Coverage vs
Proportion of Truncated States

I^PTODO rtioh of States'Active !
t*^Cp veragepf Öutc<«oe S iacc !

0 0.2 0.4 0.6 0.8

Number of Truncated States (Normalized to l.=all possible)

Here we see the results of truncating various numbers of states. On the left, we keep all
648. To the right, the proportion ofthat number decreases. The impact on the coverage is
very small at first, then slopes downward significantly. The approach taken to generate

20

this graph was a very simple choice policy: The choice policy #3 used to generate this data
is to use multitrajectory techniques until a defined maximum number of states is reached,
then resolve all events deterministically. A policy that was sensitive to trajectory
probability might have given a smaller slope to the coverage statistic. Time did not permit a
closer examination. The overall effect would be to chop off the lower part of the curve
shown in the probability histogram. However, this choice policy does not do that, ti
simply stops generating new trajectories at some point, with the consequence of narrowing
the distribution and shifting it left a bit. There are limits to savings by truncating states, as
the resulting probability distribution has less and less "tail" of low probability states.
Taken to its extreme, all states would have about the same probability.

Comparison of Stochastic, Multitrajectory Outcomes
Random movement selection

Small (4 unit) scenario
648 Stochastic Replications

(Required 22 seconds)

c

c

u 6

a.
V. v.

w X

i I i...

Random movement selection Multitrajectory move selection
Small (4 unit) scenario Small (4 unit) scenario

3240 Stochastic Replications 648 States at end
(Required 12 seconds)

K
r

* •• *8 I I j

I i i , m s s I
1 -S „ i • . £

T I
p I

M _ MM . II

r/"
M I M mm

..I IS I

I

a s

I i w

Blue Losses (about 30 to abiuT70) f^(

„si p m ti i
■ s * I
j U » I J if i ■ J B ■

J is ^
» . ■ H * I

J
I !i

Here we see the impact of random versus multitrajectory choices for the movement event,
as portrayed as a distribution over an outcome space. The outcome space is plotted in
terms of Blue loss and Loss Exchange Ratio, with the darkness of the squares being the
relative probability of states falling in that box. The most probable box in each plot is blac,
and less probable ones are lighter colors. (Later in the project, and absolute scale was
adopted, which proved more useful.) For this case, the multitrajectory plot is exhaustive; it
includes all possible outcomes. Note that it is both faster, and gives a more comprehensive
set of outcomes, than a similar number of random trajectories. It even does better than five
times the number of random trajectories. The reason a multitrajectory run for a given
number of states is quicker than stochastic simulation is the fact that the trajectories are not
generated until well into the run; initially there is only one trajectory. The choice policy
influences the growth rate of the number of states, and hence the relative speeds given a
particular number of final states.

(See next figure) Another way of reducing the number of trajectories is to "merge" those
which are similar. This gives some assurance that a "merged" trajectory was similar to one
that was kept, so this technique is preferred (though quite a bit more expensive) than
truncation. In our testing, checks to determine state mergers were performed every 25
minutes of simulated time rather than at 5 minute stime steps used for model functions.

21

Trajectory Merging:

istance
small

Trajectories are merged:

Only om
trajectory

Trajectory "merged"
The other represents
both.

When the probability of a trajectory is small enough, and its
metrics close enough to some other state, the state is purged
and the neighbor continues and represents both.

Resources are saved, but some proportion of the outcome space
(which the truncated state would reach) remains only
"expected" to be similar to the known outcome. Merging is
expensive in the cost of comparing states.

Characterizing the Outcome Set
1. Metric for "who wins" etc.: the typical kinds of MOE

used for simulations, e.g. loss rate, movement

2. Metrics characterizing the nature of the outcome set:

a. Distance: the (weighted total) distance between states

Distance = £ Ixi-xjl + £ lyi-yjl + Z Iforcei-forcejl
with summations over all units, for states i and j

b. Metrics that are computationally cheaper as a surrogate
for the actual distance. (This still needs work)

If merging is to be done, we need to be able to judge when to states are "close" to each
other. This requires some sort of metric, since an exhaustive comparison of the actual
distance, a sum of the differences in all the state variables between two states, would be
prohibitively expensive. It took a vector of indicators to give a metric that would
adequately characterize a state, for the purpose of deciding when two states could be
merged. No doubt more research could result in finding a better, less expensive metric.

22

Distance Surrogate Metric
An operationally useful surrogate for distance is needed. For the
case below, a vector difference is taken of the sums of the
various metric variables (e.g. Blue average X, Y,speed, force,...)
in each state. The sume of vector component differences is the
aggregate metric used for estimating actual distance, which is
the sum of all state vaiable differences.

250 T

200-

150 ■

| 1004

2 504 o
>

. ■ i _• -. i • . ■ . r.. ■•■■ .■. * •• •" ■
■ :• ■■* -■• , .»r , _■• •■ ■•*: -_

.'."'.,;! ■ - - *\a\ ■ :-*.- •» ••

J . '-"• ! V ' - ■ ■ ■ "■ \'m i»'_■". ' r. * • ■

o
0 20 40 60 80 100 120 140 160 180

Actual State to State Distance in km, force, or equivalent

Here we see the actual distances between state pairs compared to the distance metric results.
This is quite a bit better than earlier metrics; a scalar metric was almost worthless. The
metric used here has about 16 component indicators including aggregate Blue and Red
strength, dispersion, mean X and Y location, velocity, and "average" over operational
posture.

Effects of Varying Merge Distance
Criterion

in >—i v-> CN ID m in
© «-H ci ei

Metric distance criterion for merging states (in km or units

When the value of the distance metric threshold is varied for merging states, we get
changes in coverage, and in the number of states kept. It is interesting that even very small
distances allow significant reductions in the number of states, with almost no difference in
the nature of the outcome space; the average discrepancy between the pruned states and
their representatives is small. Many of the merged states are probably similar, but result
from a unit taking one path or another and ending up in pretty nearly the same situation.
There is a significant jump at "1" for the criterion for reasons that are not now understood.

23

Very likely this profile would vary with scenario. Toward the right, the coverage statistic
does better than the number of states statistic, which is encouraging. Also, there is no very
abrupt unbounded rise in the discrepancy statistic, which sufggests that this technique
should be useful for pruning large numbers of trajectories where necessary. The figure
below indicates that most pruned trajectories styed close to their surrogates, but the very
high standard deviation (and a more detailed examination of data) shows that in some cases
trajectories deviate greatly from their surrogates. A better metric may prove to discriminate
against such cases better than the one now used.

Divergence of Pruned States from
-Average distance ■ their Surrogates

a
o

<u c3

toß p
>

T3

o
1

<L> u
O -*-»
u CO

CO N
TJ

OJ
■4—<

Ö a
CO C/D
C/1 a T3
P 9J
o c

a

cC <u
CO I-,

S o
>

*< 4J
c5

0.05 0.1 0.15 0.2 0.25 0.3

Distance Criterion for State Merge (in km, units of
force, or equivalent)

0.35

Unfortunately, the version of the simulation that included the state merge capability would
not run for the larger "mid-sized" scenario, so we were unable to collect this kind of data
for the larger scenario context.

(See following figure) The large scenario runs were used to generate plots that give, in
effect, an estimated probability density function over some space defined by two Measures
of Effectiveness. Note the difference between this and the outcome plots for the 3 sector
Lanchester model, which used input parameter variations for the axes, and could only
portray outcome with respect to variation of two parameters. In this plot, in contrast, we
reflect the variations due to variability of all events which the analyst has chosen for
multitrajectory treatment (In this case, all of the movement choice events).

Note that variations in initial parameters can be thought of as a special case of and event, in
which the outcome is a particular value for the parameter. In light of that, the
multitrajectory technique could be thought of as an automated method of generating
sensitivity analyses, extended to include events that occur dynamically within the
simulation as well as initial parameters, and using trajectory probability as a method for
accounting in reconning the importance of various possibilities and managing which
excursions to examine.

24

Stochastic and Multitrajectory/Deterministic Policy
for Mid sized scenario

Stochastic resolution of movement Multitrajectory Movement, 800 states,
events, 800 replications, treated as each choice policy 3: All states' events are
equally probable. resolved M.T. until the state limit of 800 is

reached, then all events are deterministic.

o
cO
o

rr
©
D
C
CO
.C u
X

LU

V 'i.

% , Locus of cases in h
V— which Red
'%• losses were exactly

„ %$ 85.
«• ,., H., (Red units 22, 25, 41

, -, ". H *'fc:destr.) <
*

* „ H!»

.„• Il^x. ""'"1

1 ^^fcj

1 ^J

Blue Losses: 40 to 120 ^^

Even though Multitrajectory/deterministic gives greater coverage of the Outcome Space, still
only a small portion of the outcome space is covered, and the deterministic sampling later in
the simulation is not representative.

The results of running the mid-sized scenario revealed the importance of good trajectory
choice policy. Here we see both the stochastic and multitrajectory (hmited) outcome
spaces. In contrast to the smaller scenario, the plot reveals a marked organization, with a
locus of points corresponding to battles in which three Red units (those most involved in
the battle) were annihilated. The vacant band below results from how unit elimination is
accounted. If a unit is below 40%, it is considered eliminated and none of its remaining
strength is counted. This gives a quantum effect.

Clearly the Stochastic set tells us more about the outcome space. In the small scenario
case, it was possible for the multitrajectory runs to exhaustively cover the outcome space.
Here, about three million trajectories would be needed, and the machine used could only
handle 800. The choice policy used, "policy 3", used multitrajectory resolution for all
events until there were 800 trajectories, then used deterministic resolution. The "budget" of
states was exhausted early, before the more interesting variations occurred, so the diversity
of outcomes was not uncovered nearly as well as with stochastic simulation. Note that the
scattering of outcomes along the left axis is almost completely missed in the (partially)
multitrajectory case. However, note that the multitrajectory outcomes show more variation
in probablility among those outcomes captured.

For this series of runs, the probability, portrayed as shading, is on an absolute scale rather
than relative. The "tab" a third of the way up the left axis is an artifact of the display that
was captured for this figure, as is the pointer arrow.

25

Other Multitrajectory Choice Policies
for Mid sized scenario

Multitrajectory Movement, 800 states, Multitrajectory Movement, 800 states,
choice policy 4: All states' events are choice policy 6: (After 160 states, only
resolved M.T. until the state limit of 800 is states with p>.00013 have events resolved
reached; then all events are stochastic. M.T.; other events are stochastic)

cr
CD
D
C
CO .n
cj
X

CO
CO

\'.
'' H

if* % v. .
i * * Nv

r » « " V

* &*'

%*
h > , v,

* 1 i* t WM
J * a «si *K

■ « W *'*M(*

J
■ft... ^

n f

Blue Losses: 40 to 120 ^ ^

Both of these convey more information than the simplest choice policy, with policy 4 on
left giving more information on relative probabilities and policy 6 giving more information
on structure compared to stochastic case. A choice policy sensitive to battlefield
outcome MOE's may have done considerably better.

With other choice policies, we can actually do better than the stochastic case. Indeed, on
the left we see the results of simply resolving events stochastically (rather than
deterministically) after the state limit is reached. This has the benefit of ensuring the largest
variety of trajectories possible up until the state limit is reached; the previous purely
stochastic case would have some trajectories uncovered, and others duplicated, at the same
point in the simulation run.

By rationing the last 80% of the states to the higher probability states, a somewhat more
sophisticated choice policy, we get the plot shown at the right. This gives somewhat
greater (though still small) coverage of the outcome space, while still allowing the
occasional outlier outcome to arise.

In neither of these cases was there any mechanism to ensure that "interesting" cases were
captures. This would be a logical extension to the choice policy library. The Measures of
Effectiveness (MOE's) could be utilized as a metric for deciding whether a state should be
truncated or not, along with probability and the current number of trajectories.

Note also that choice policy is set at run time, and controls dynamically how events of a
given type are resolved.

26

Other Cases for Mid Sized Scenario
Multitrajectory C2, 800 Multitrajectory for Movement,
states, Choice policy 3 Decisionmaking, and Acquisition,
(M.T. until 800 states, then 800 states, choice policy 6 for all.
deterministic) (Beyond 160 states, M.T. only if

p>.00013)

(«1

-ft t t

* te I

' " I»" " "* '

*% , i•"

SÄ S» It

** " AS.
"SU

Here we see the results of using multitrajectory resolution of just the C2 events, rather than
movement, and the result of using multitrajectory resolution for several events
simultaneously.

Analysis Strategies:
1. Manage trajectories to get most probable outcomes first.

As more resources are used, less probable outcomes are
explored. Stop when the coverage meets your goals.

2. Manage trajectories to ensure that the greatest span of
outcomes is performed first (evaluated in terms of useful
MOE). As more resources are used, trajectories having
intermediate MOE values are explored. Stop when
coverage meets your goals.

MOE

1. Most
probable
first

2. greatest
span first

width indicates probability

27

This project could not explore more sophisticated trajectory management strategies such as
depth first execution of the more probable or interesting states. We imagine an analyst
using multitrajectory simulation in a background mode, with a display portraying the
outcome space as illustrated earlier. As more time elapses, more trajectories are brought to
completion, and the picture gets added detail. The coverage of the outcome space
increases, and the "shape" of the outcome space becomes clearer. When the analyst is
satisfied, then the simulation would be halted and the commitment of more resources would
cease. It should also be possible to click on one of the cells in the outcome space portrayal,
learn which states gave that result, and their probabilities, then replay those trajectories a
step at a time to watch the battle unfold. These features have been built into the prototype
and some auxilliary software. Each state keeps a record of event resolutions, and the
simulation can be operated in a mode where it merely repeats those events according to that
script. The "click on" feature, however, is not operational.

In summary, we believe that the multitrajectory approach is part of a suite of tools that will
make simulation a more useful tool, with a focus more on the analytic task than the
intricacies of simulation internals, while adding little to the difficulty of developing
simulations thanks to the class structure that hides the multitrajectory details.

Examples of Analytic Use:
Re-plot for
different MOE's

Look at
details

28

Conclusions

1 ■ It is possible to build a combat simulation
capable of multitrajectory simulation, that
nides the messy details from the application
programmer. (But not as "clean" as desired.)

2. Multitrajectory simulation potentially gives
more information to the analyst at less cost, but
f resources relative to outcome space size are

small, careful trajectory management is needed.

Quantitative results sought still not available;
the eaglet prototype not fully functional yet.

to get the best results. Thus, the issues o?^n<.??.d Ch°'Ce poUc>' **" <* "^ded
have been identified as pk^hSSta ÄSäS**^ mana«eme°' ^'^cs

Recommended Further Research
Investigate scaling issues, with tests involvine uo to

hundreds of units, and larger span of echelons*

Improve heuristics for Choice Policy
When to prune or truncate trajectories as function of MOE's

Exploration of parallel processing of trajectories-
Easter to parallelize than single'simulSnTralectory

Identification of critical events
Wrth scaling, the focus of what events are critical may shift

29

L

